Introduction

The China Physiological Signal Challenge 2019 (CPSC 2019) aims to encourage the development of algorithms for challenging QRS detection and heart rate (HR) estimation from short-term single-lead ECG recordings usually with low signal quality and/or abnormal rhythm waveforms. ECG signal provides an important role in non-invasively monitoring and clinical diagnosis for cardiovascular disease (CVD). Detection of QRS complex is an essential step for ECG signal processing, and can benefit the following HR calculation and abnormal situation analysis. Although detection methods of QRS complex have been severely tracked throughout the last several decades, accurate QRS location and HR estimation are still challenging in noisy signal episode or abnormal rhythm waveforms, especially when the ECG recordings are from the wearable dynamic ECG acquisition. It is true that many of the developed QRS detection algorithms can achieve high accuracy (over 99% in sensitivity and positive predictivity) when tested over the standard ECG databases such as MIT-BIH Arrhythmia Database or AHA Database [1]. However, these algorithms may not be able to perform well when used in the daily life environment that will cause severe noises and significantly reduce the signal quality. A recent study confirmed that none of the common QRS algorithms can obtain 80% detection accuracy when tested in a common dynamic noisy ECG database [2]. Thus, in this challenge, we provide a new ECG database containing noisy ECG episodes and/or signals with different arrhythmia patterns, encouraging participants to develop more efficient and robust algorithms QRS detection and HR estimation. In addition, it is worth to note that, although HR can be calculated from the detection results of QRS complexes, HR can be still estimated without QRS detection step [3,4].

Reference
1.   G.B. Moody, R.G. Mark, The impact of the MIT-BIH arrhythmia database, IEEE Engineering in Medicine & Biology Magazine the Quarterly Magazine of the Engineering in Medicine &
      Biology Society, 20 (2001) 45-50.
2.   Liu, F.F.; Wei, S.S.; Li, Y.B.; Jiang, X.E.; Zhang, Z.M.; Liu, C.Y., Performance analysis of ten common qrs detectors on different ecg application cases. Journal of Healthcare Engineering
      2018, 2018, ID 9050812.
3.   J.J. Gieraltowski, K. Ciuchcinski, I. Grzegorczyk, K. Kosna, Heart rate variability discovery: Algorithm for detection of heart rate from noisy, multimodal recordings, Computing in
      Cardiology, 2014, pp. 253-256.
4.   J. Gieraltowski, K. Ciuchcinski, I. Grzegorczyk, K. Kosna, M. Solinski, P.Podziemski, RS slope detection algorithm for extraction of heart rate from noisy, multimodal recordings,
      Physiological Measurement, 36 (2015) 1743-1761.